锂电池挤压检测,传感器坏点检测
| 更新时间 2025-01-15 11:00:00 价格 100元 / 件 联系电话 13083509927 联系手机 18115771803 联系人 奚家和 立即询价 |
锂电池挤压检测,传感器坏点检测
锂离子电池(LIB)因其寿命长、高比容量和功率密度大的性能优势已在便携式电子设备中得到普遍应用,并用于新开发的电动汽车。预计未来将成为其主要的动力电源之一。随着所有这些器件对功率的需求不断增加,锂离子电池的性能成为一个热点问题。如何对锂离子电池材料进行快速检测、表征以及质控越来越受到研究者的关注。锂离子电池(LIB)因其寿命长、高比容量和功率密度大的性能优势已在便携式电子设备中得到普遍应用,并用于新开发的电动汽车。预计未来将成为其主要的动力电源之一。随着所有这些器件对功率的需求不断增加,锂离子电池的性能成为一个热点问题。如何对锂离子电池材料进行快速检测、表征以及质控越来越受到研究者的关注。
基于石墨负极的商业锂电池系统其理论能量密度(600 Wh/kg)不能满足日益增长的高耗能电动汽车等的能源储存需求。替换石墨负极(理论容量:372 mA h g-1)为高容量磷负极(2596 mA h g-1)可进一步提高电池系统的能量密度。相比于石墨负极(嵌锂电位为0.1 V),磷负极具有安全嵌锂电位(0.7 V),可更好避免电池循环过程中因过电位所产生的锂枝晶问题,因此磷负极被认为是极具研究潜力的高容量、快充型负极材料之一。在磷的三种主要的同素异形体中,黑磷价格昂贵、白磷有毒,无毒、空气下稳定、储量丰富和价格低廉的红磷被看作是*具商业化前景的磷负极。除了电极材料的研究,电解质的研究也不容忽视。传统的六氟磷酸锂(LiPF6)电解质中磷基锂电池的实现受到三个主要因素影响:i) 由于磷负极在循环锂化/脱锂过程中极大的体积膨胀(~300%),极易造成活性物质的粉化脱落和不稳定的固态电解质界面(SEI),不利于长期循环稳定性;ii) LiPF6对水分子、酒精和水极为敏感,并且会自动催化分解为反应活性物质(如HF),进一步促进与电极、电解质和粘结剂之间的副反应;iii) 使用高度易燃和挥发性的传统电解质引起的安全问题。以往的工作重点是设计各种纳米结构电极,很少考虑电解质的优化,因此在高电流密度(一般大于1Ag−1)电化学性能并不理想。而关于针对磷负极的高效电解质体系的报道很少。因此,对于快速充电的LIBs,设计和优化安全高效的电解质是非常有必要的。